As a non-human primate, the pig-tailed macaque has received wide attention because it can be infected by HIV-1. In this study, we determined the complete mtDNA sequence of the northern pig-tailed macaque (Macaca leonina). Unexpectedly, during the amplification of the mtDNA control region (D-loop region) we observed several D-loop-like sequences, which were NUMTs (nuclear mitochondrial sequences) and a total of 14 D-loop-like NUMT haplotypes were later identified in five individuals. The neighbor-joining tree and estimated divergence time based on these D-loop-like NUMT sequences of M. leonina provide some insights into the understanding of the evolutionary history of NUMTs. D-loop-like haplotypes G and H, which also exist in the nuclear genome of mulatta, appear to have been translocated into the nuclear genome before the divergence of M. mulatta and M. leonina. The other D-loop-like NUMT haplotypes were translocated into the nuclear genome of M. leonina after the divergence of the two species. Later sequence conversion was predicted to occur among these 14 D-loop-like NUMT haplotypes. The overall structure of the mtDNA of M. leonina was found to be similar to that seen in other mammalian mitochondrial genomes. Phylogenetic analysis based on the maximum likelihood method shows M. leonina clustered with Macaca silenus among the analyzed mammalian species.
Keywords: Gene conversion; NUMT; Phylogeny; Pig-tailed monkey; Tandem repeat; mtDNA.
Copyright © 2015 Elsevier B.V. All rights reserved.