The triplet-triplet annihilation (TTA) efficiency in bicomponent organic systems is investigated by employing a gap plasmon resonator. In our structure, strong absorption peaks arising from coupling between localized surface plasmons and surface plasmon polaritons closely overlap the Q band of porphyrin, leading to higher triplet concentrations within the film. We find that at ultralow excitation intensities on the order of watts per square centimeter (W cm(-2)), TTA becomes predominant for the organic system on a gap plasmon resonator. A strong surface-enhanced Raman scattering intensity is observed in this substrate, verifying the near-field enhancement.