Background: Antibiotic resistance is increasing worldwide, being of special concern in low- and middle-income countries. The aim of this study was to determine the antimicrobial susceptibility and mechanisms of resistance in 205 enterotoxigenic Escherichia coli (ETEC) isolates from two cohort studies in children <24 months in Lima, Peru.
Methods: ETEC were identified by an in-house multiplex real-time PCR. Susceptibility to 13 antimicrobial agents was tested by disk diffusion; mechanisms of resistance were evaluated by PCR.
Results: ETEC isolates were resistant to ampicillin (64%), cotrimoxazole (52%), tetracycline (37%); 39% of the isolates were multidrug-resistant. Heat-stable toxin producing (ETEC-st) (48%) and heat-labile toxin producing ETEC (ETEC-lt) (40%) had higher rates of multidrug resistance than isolates producing both toxins (ETEC-lt-st) (21%), p<0.05. Only 10% of isolates were resistant to nalidixic acid and none to ciprofloxacin or cefotaxime. Ampicillin and sulfamethoxazole resistance were most often associated with blaTEM (69%) and sul2 genes (68%), respectively. Tetracycline resistance was associated with tet(A) (49%) and tet(B) (39%) genes. Azithromycin inhibitory diameters were ≤15 mm in 36% of isolates, with 5% of those presenting the mph(A) gene.
Conclusions: ETEC from Peruvian children are often resistant to older, inexpensive antibiotics, while remaining susceptible to ciprofloxacin, cephalosporins and furazolidone. Fluoroquinolones and azithromycin remain the drugs of choice for ETEC infections in Peru. However, further development of resistance should be closely monitored.
Keywords: Antibiotic resistance; Children; Diarrhoea; Enterotoxigenic Escherichia coli; Peru.
Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.