Deciphering neural network function in health and disease requires recording from many active neurons simultaneously. Developing approaches to increase their numbers is a major neurotechnological challenge. Parallel to recent advances in optical Ca(2+) imaging, an emerging approach consists in adopting complementary-metal-oxide-semiconductor (CMOS) technology to realize MultiElectrode Array (MEA) devices. By implementing signal conditioning and multiplexing circuits, these devices allow nowadays to record from several thousands of single neurons at sub-millisecond temporal resolution. At the same time, these recordings generate very large data streams which become challenging to analyze. Here, at first we shortly review the major approaches developed for data management and analysis for conventional, low-resolution MEAs. We highlight how conventional computational tools cannot be easily up-scaled to very large electrode array recordings, and custom bioinformatics tools are an emerging need in this field. We then introduce a novel approach adapted for the acquisition, compression and analysis of extracellular signals acquired simultaneously from 4096 electrodes with CMOS MEAs. Finally, as a case study, we describe how this novel large scale recording platform was used to record and analyze extracellular spikes from the ganglion cell layer in the wholemount retina at pan-retinal scale following patterned light stimulation.
Keywords: Big data; CMOS-MEAs; Data analysis; Electrophysiology; Neurocomputation.
Copyright © 2015 Elsevier Inc. All rights reserved.