Protein carbonylation in kidney medulla of the spontaneously hypertensive rat

Proteomics Clin Appl. 2009 Mar;3(3):338-46. doi: 10.1002/prca.200780098. Epub 2009 Feb 13.

Abstract

Enhanced generation of ROS has been reported in models of hypertension such as the spontaneously hypertensive rat (SHR). Impairment of kidney function has been implicated in development and progression of hypertension, and the renal medulla appears to play an important role in regulating long-term blood pressure. A key biomarker of oxidative stress is the formation of protein carbonyls, which we set out to characterize in the SHR medulla. We identified 11 proteins that were differentially carbonylated in SHR medulla in comparison to normotensive wistars including enolase 1, catalase, carbonic anhydrase II, transferrin and members of the aldo-keto-reductase family. This enhanced protein oxidation was not only accompanied by an increase in intracellular iron deposition, but aldo-keto-reductase activity was also significantly less in SHR medulla than in normotensive Wistars. Oxidative stress appears selectively to target a subset of proteins in SHR kidney and modification of these proteins may in turn contribute to the renopathy associated with hypertension.

Keywords: Carbonylation; Hypertension; Kidney; Oxidative stress; Rat.