A major green tea component, epigallocatechin-3-gallate (EGCG), has been proven protective against lethal sepsis in experimental setting, but its protective mechanisms remain incompletely understood. Here, we provide evidence to support EGCG's capacities in stimulating G-CSF production and neutrophilia in vivo. In an animal model of sepsis, EGCG significantly elevated peritoneal levels of G-CSF and several chemokines (e.g., MCP-1/CCL2 and MIP-1γ/CCL9), and consequently increased peritoneal neutrophil numbers (neutrophilia) at a late stage. In vitro, EGCG divergently affected HMGB1-mediated production of several chemokines: reducing CXCL15 and RANTES/CCL5, but elevating G-CSF and MIP-1α/CCL3 production by peritoneal macrophages. Similarly, it significantly induced the expression and secretion of G-CSF and MIP-1α/CCL3 in human peripheral blood mononuclear cells. Based on our preliminary data, it may be important to search for anti-inflammatory and G-CSF-stimulating agents for the clinical management of inflammatory diseases.
Keywords: Cytokine antibody array; Green tea; Innate immune cells; Sepsis.