Hybrid bioinorganic approach to solar-to-chemical conversion

Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11461-6. doi: 10.1073/pnas.1508075112. Epub 2015 Aug 24.

Abstract

Natural photosynthesis harnesses solar energy to convert CO2 and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO2 to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts and Methanosarcina barkeri as a biocatalyst for CO2 fixation, we demonstrate robust and efficient electrochemical CO2 to CH4 conversion at up to 86% overall Faradaic efficiency for ≥ 7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO2, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion.

Keywords: artificial photosynthesis; carbon dioxide fixation; photocatalysis; solar fuels; water splitting.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Carbon Dioxide / chemistry
  • Catalysis
  • Electrolysis
  • Hydrogen / chemistry
  • Light
  • Materials Testing
  • Methane / chemistry
  • Methanosarcina barkeri / metabolism
  • Photosynthesis
  • Silicon / chemistry
  • Solar Energy*
  • Sunlight*
  • Temperature
  • Water / chemistry

Substances

  • Water
  • Carbon Dioxide
  • Hydrogen
  • Methane
  • Silicon