MicroRNA-200 promotes lung cancer cell growth through FOG2-independent AKT activation

IUBMB Life. 2015 Sep;67(9):720-5. doi: 10.1002/iub.1412. Epub 2015 Aug 27.

Abstract

MicroRNA-200 (miR-200) has emerged as a regulator of the PI3K/AKT pathway and cancer cell growth. It was reported that miR-200 can activate PI3K/AKT by targeting FOG2 (friend of GATA 2), which directly binds to the p85α regulatory subunit of PI3K. We found that miR-200 was elevated in early stage lung adenocarcinomas when compared with normal lung tissues, and the expression of miR-200 promoted the tumor spheroid growth of lung adenocarcinoma cells. We show that AKT activation was essential for such oncogenic action of miR-200. However, depletion of FOG2 had little effect on AKT activation. By performing a reverse-phase protein array, we found that miR-200 not only activated AKT but also concomitantly inactivated S6K and increased IRS-1, an S6K substrate that is increased on S6K inactivation. Depletion of IRS-1 partially inhibited the miR-200-dependent AKT activation. Taken together, our results suggest that miR-200 may activate AKT in lung adenocarcinoma cells through a FOG2-independent mechanism involving IRS-1. Our findings also provide evidence that increased miR-200 expression may contribute to early lung tumorigenesis and that AKT inhibitors may be useful for the treatment of miR-200-dependent tumor cell growth.

Keywords: AKT; lung cancer; microRNA-200; signaling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma / genetics
  • Adenocarcinoma / metabolism
  • Adenocarcinoma / pathology*
  • Aged
  • Aged, 80 and over
  • Blotting, Western
  • Cell Transformation, Neoplastic
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • Female
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology*
  • Male
  • MicroRNAs / genetics*
  • Middle Aged
  • Neoplasm Staging
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Prognosis
  • Protein Array Analysis
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • RNA, Messenger / genetics
  • Real-Time Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction
  • Signal Transduction
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*

Substances

  • DNA-Binding Proteins
  • MIRN200 microRNA, human
  • MicroRNAs
  • RNA, Messenger
  • Transcription Factors
  • ZFPM2 protein, human
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt