Differential DNA repair pathway choice in cancer cells after proton- and photon-irradiation

Radiother Oncol. 2015 Sep;116(3):374-80. doi: 10.1016/j.radonc.2015.08.014. Epub 2015 Aug 25.

Abstract

Background and purpose: Non-homologous end-joining (NHEJ) and homologous recombination (HR) contribute to the repair of irradiation-induced DNA double-strand breaks (DSBs). We investigated the impact of the two major DSB repair machineries for cellular survival of human tumor cells in response to proton- and photon-irradiation.

Materials and methods: DNA damage repair and cell survival were analyzed in wildtype, HR- and NHEJ-repair-compromised and pharmacologically DNA-PKcs-inhibited human tumor cells in response to clinically relevant, low-linear energy transfer proton- and 200-keV photon-irradiation.

Results: Pharmacological inhibition of DNA-PKcs strongly radiosensitized lung adenocarcinoma and glioblastoma cells to photon- but to a much lower extent to proton-irradiation. Enhanced radiosensitization correlated with strongly delayed repair kinetics with elevated amounts of γH2AX foci after photon-irradiation. Interestingly, we observed reduced phosphorylation of DNA-PKcs at Ser-2056 and Thr-2609 clusters after proton-irradiation compared to photon-irradiation. In contrast, A549 cells depleted of the RAD51 recombinase were markedly hypersensitive to proton-irradiation in comparison with control cells. Likewise, human BRCA2-deficient ovarian carcinoma cells were hypersensitive toward proton- in comparison with photon-irradiation.

Conclusion: A differential DNA damage response with enhanced susceptibility of HR-deficient tumor cells to proton-irradiation and increased sensitivity of photon-irradiated tumor cells to NHEJ inhibitors were demonstrated.

Keywords: Homologous recombination; NU7026; Non-homologous end-joining; Photon irradiation; Proton irradiation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma / radiotherapy*
  • Adenocarcinoma of Lung
  • Cell Line, Tumor
  • Cell Survival / physiology
  • Cell Survival / radiation effects
  • DNA Breaks, Double-Stranded / radiation effects*
  • DNA End-Joining Repair / physiology
  • DNA End-Joining Repair / radiation effects
  • DNA Repair / physiology*
  • DNA Repair / radiation effects*
  • Glioblastoma / radiotherapy*
  • Humans
  • Lung Neoplasms / radiotherapy*
  • Protons
  • Radiation Tolerance / physiology*
  • Radiation Tolerance / radiation effects

Substances

  • Protons