Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia

Nat Med. 2015 Oct;21(10):1182-9. doi: 10.1038/nm.3955. Epub 2015 Sep 21.

Abstract

Activating mutations in NOTCH1 are common in T cell acute lymphoblastic leukemia (T-ALL). Here we identify glutaminolysis as a critical pathway for leukemia cell growth downstream of NOTCH1 and a key determinant of the response to anti-NOTCH1 therapies in vivo. Mechanistically, inhibition of NOTCH1 signaling in T-ALL induces a metabolic shutdown, with prominent inhibition of glutaminolysis and triggers autophagy as a salvage pathway supporting leukemia cell metabolism. Consequently, inhibition of glutaminolysis and inhibition of autophagy strongly and synergistically enhance the antileukemic effects of anti-NOTCH1 therapy in mice harboring T-ALL. Moreover, we demonstrate that Pten loss upregulates glycolysis and consequently rescues leukemic cell metabolism, thereby abrogating the antileukemic effects of NOTCH1 inhibition. Overall, these results identify glutaminolysis as a major node in cancer metabolism controlled by NOTCH1 and as therapeutic target for the treatment of T-ALL.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Drug Resistance, Neoplasm*
  • Glutamine / metabolism
  • Mice
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma / drug therapy*
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma / metabolism
  • Receptor, Notch1 / antagonists & inhibitors*

Substances

  • Antineoplastic Agents
  • Notch1 protein, mouse
  • Receptor, Notch1
  • Glutamine