Cyclic diguanylate monophosphate (c-di-GMP) is a well-conserved second messenger in bacteria. During infection, the innate immune system can also sense c-di-GMP; however, whether bacterial pathogens utilize c-di-GMP as a weapon to fight against host defense for survival and possible mechanisms underlying this process remain poorly understood. Siderocalin (LCN2) is a key antibacterial component of the innate immune system and sequesters bacterial siderophores to prevent acquisition of iron. Here we show that c-di-GMP can directly target the human LCN2 protein to inhibit its antibacterial activity. We demonstrate that c-di-GMP specifically binds to LCN2. In addition, c-di-GMP can compete with bacterial ferric siderophores to bind LCN2. Furthermore, c-di-GMP can significantly reduce LCN2-mediated inhibition on the in vitro growth of Escherichia coli. Thus, LCN2 acts as a c-di-GMP receptor. Our findings provide insight into the mechanism by which bacteria utilize c-di-GMP to interfere with the innate immune system for survival.