Defects in experiencing disgust may contribute to obesity by allowing for the overconsumption of food. However, the relationship of disgust proneness and its associated neural locus has yet to be explored in the context of obesity. Thirty-three participants (17 obese, 16 lean) completed the Disgust Propensity and Sensitivity Scale-Revised and a functional magnetic resonance imaging paradigm where images from 4 categories (food, contaminates, contaminated food or fixation) were randomly presented. Independent two-sample t-tests revealed significantly lower levels of Disgust Sensitivity for the obese group (mean score = 14.7) compared with the lean group (mean score = 17.6, P = 0.026). The obese group had less activation in the right insula than the lean group when viewing contaminated food images. Multiple regression with interaction analysis revealed one left insula region where the association of Disgust Sensitivity scores with activation differed by group when viewing contaminated food images. These interaction effects were driven by the negative correlation of Disgust Sensitivity scores with beta values extracted from the left insula in the obese group (r = -0.59) compared with a positive correlation in the lean group (r = 0.65). Given these body mass index-dependent differences in Disgust Sensitivity and neural responsiveness to disgusting food images, it is likely that altered Disgust Sensitivity may contribute to obesity.
Keywords: BMI; disgust; fMRI; insula; obesity.
© The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.