Natural killer (NK) cells are lymphocytes that participate in different facets of immunity. They can act as innate sentinels through recognition and eradication of infected or transformed target cells, so-called immunosurveillance. In addition, they can contain immune responses through the killing of other activated immune cells, so-called immunoregulation. Furthermore, they instruct and regulate immune responses by producing pro-inflammatory cytokines such as IFN-γ, either upon direct target cell recognition or by relaying cytokine cues from various cell types. Recent studies in mouse and man have uncovered infection-associated expansions of NK cell subsets with specific receptor repertoires and diverse patterns of intracellular signaling molecule expression. Moreover, distinct attributes of NK cells in tissues, including tissue-resident subsets, are being further elucidated. Findings support an emerging theme of ever-increasing diversification and functional specialization among different NK cell subsets, with a functional dichotomy between subsets involved in immunoregulation or immunosurveillance. The epigenetic landscapes and transcriptional profiles of different NK cell subsets are providing insights into the molecular regulation of effector functions. Here, we review phenotypic, functional, and developmental characteristics of a spectrum of human NK cell subsets. We also discuss the molecular underpinnings of different NK cell subsets and their potential contributions to immunity as well as disease susceptibility.