Purpose: microRNAs regulate gene-expression in biological and pathophysiological processes, including multiple myeloma. Here we address i) What are the number and magnitude of changes in miRNA-expression between normal plasma cells and myeloma- or MGUS-samples, and the latter two? ii) What is the biological relevance and how does miRNA-expression impact on gene-expression? iii) Is there a prognostic significance, and what is its background?
Experimental design: Ninety-two purified myeloma-, MGUS-, normal plasma cell- and myeloma cell line-samples were investigated using miChip-arrays interrogating 559 human miRNAs. Impact on gene-expression was assessed by Affymetrix DNA-microarrays in two cohorts of myeloma patients (n = 677); chromosomal aberrations were assessed by iFISH, survival for 592 patients undergoing up-front high-dose chemotherapy.
Results: Compared to normal plasma cells, 67/559 miRNAs (12%) with fold changes of 4.6 to -3.1 are differentially expressed in myeloma-, 20 (3.6%) in MGUS-samples, and three (0.5%) between MGUS and myeloma. Expression of miRNAs is associated with proliferation, chromosomal aberrations, tumor mass, and gene expression-based risk-scores. This holds true for target-gene signatures of regulated mRNAs. miRNA-expression confers prognostic significance for event-free and overall survival, as do respective target-gene signatures.
Conclusions: The myeloma-miRNome confers a pattern of small changes of individual miRNAs impacting on gene-expression, biological functions, and survival.
Keywords: gene expression profiling; miRNA; multiple myeloma; survival.