As major histocompatibility complexes in humans, the human leukocyte antigens (HLAs) have important functions to present antigen peptides onto T-cell receptors for immunological recognition and responses. Interpreting and predicting HLA-peptide binding are important to study T-cell epitopes, immune reactions, and the mechanisms of adverse drug reactions. We review different types of machine learning methods and tools that have been used for HLA-peptide binding prediction. We also summarize the descriptors based on which the HLA-peptide binding prediction models have been constructed and discuss the limitation and challenges of the current methods. Lastly, we give a future perspective on the HLA-peptide binding prediction method based on network analysis.
Keywords: HLA; MHC; binding; machine learning; peptide; prediction.