Excessive alcohol use in young adults is associated with greater impulsivity and neurobiological alterations in executive control systems. The maximum number of drinks consumed during drinking occasions ('MaxDrinks') represents a phenotype linked to vulnerability of alcohol use disorders, and an increase, or 'escalation', in MaxDrinks may be indicative of greater risk for problematic drinking. Thirty-six young adult drinkers performed a Go/No-Go task during fMRI, completed impulsivity-related assessments, and provided monthly reports of alcohol use during a 12-month follow-up period. Participants were characterized by MaxDrinks at baseline and after follow-up, identifying 18 escalating drinkers and 18 constant drinkers. Independent component analysis was used to investigate functional brain networks associated with response inhibition, and relationships with principal component analysis derived impulsivity-related domains were examined. Greater baseline MaxDrinks was associated with an average reduction in the engagement of a right-lateralized fronto-parietal functional network, while an escalation in MaxDrinks was associated with a greater difference in fronto-parietal engagement between successful inhibitions and error trials. Escalating drinkers displayed greater impulsivity/compulsivity-related domain scores that were positively associated with fronto-parietal network engagement and change in MaxDrinks during follow-up. In young adults, an escalating MaxDrinks trajectory was prospectively associated with altered fronto-parietal control mechanisms and greater impulsivity/compulsivity scores. Continued longitudinal studies of MaxDrinks trajectories, functional network activity, and impulsivity/compulsivity-related features may lend further insight into an intermediate phenotype vulnerable for alcohol use and addictive disorders.