Intracellular transport depends on cooperation between distinct motor proteins. Two anterograde intraflagellar transport (IFT) motors, heterotrimeric kinesin-II and homodimeric OSM-3, cooperate to move cargo along Caenorhabditis elegans cilia. Here, using quantitative fluorescence microscopy, with single-molecule sensitivity, of IFT in living strains containing single-copy transgenes encoding fluorescent IFT proteins, we show that kinesin-II transports IFT trains through the ciliary base and transition zone to a 'handover zone' on the proximal axoneme. There, OSM-3 gradually replaces kinesin-II, yielding velocity profiles inconsistent with in vitro motility assays, and then drives transport to the ciliary tip. Dissociated kinesin-II motors undergo rapid turnaround and recycling to the ciliary base, whereas OSM-3 is recycled mainly to the handover zone. This reveals a functional differentiation in which the slower, less processive kinesin-II imports IFT trains into the cilium and OSM-3 drives their long-range transport, thereby optimizing cargo delivery.