There is significant interindividual variation in acute mountain sickness (AMS) susceptibility in humans. To identify genes related to AMS susceptibility, we used a genome-wide association study (GWAS) to simultaneously test associations between genetic variants dispersed throughout the genome and the presence and severity of AMS. DNA samples were collected from subjects who ascended rapidly to Gosainkunda, Nepal (4380 m), as part of the 2005, 2010, and 2012 Janai Purnima festivals. The Lake Louise Score was used to measure AMS severity. The primary analysis was based on 99 male subjects (43 with AMS; 56 without AMS). Genotyping for the GWAS was performed using Infinium Human Core Exome Bead Chips (542,556 single-nucleotide polymorphisms were assayed), and validation genotyping was performed with pyrosequencing in two additional cohorts (n = 101 for each). In total, 270,389 single nucleotide polymorphisms (SNPs) passed quality control, and 4 SNPs (one intronic, three nonsynonymous) in the FAM149A gene were associated with AMS severity after correcting for multiple hypothesis testing (p = 1.8E-7); however, in the validation cohorts, FAM149A was not associated with the presence or severity of AMS. No other genes were associated with AMS susceptibility at the genome-wide level. Due to the large influence of environmental factors (i.e., ascent rate and altitude attained) and the difficulties associated with the AMS phenotype (i.e., low repeatability, nonspecific symptoms, potentially independent ailments), we suggest that future studies addressing the variation in the acute human hypoxia response should focus on objective responses to acute hypoxia instead of AMS.
Keywords: Nepalese; acclimatization; altitude illness; genomics; hypoxia.