In recent times, ionizing radiation has been used around the world to screen persons for non-medical purposes, namely to detect bulk explosives or other contraband hidden on the body including materials not registered by metal detectors. In contrast to conventional transmission or projection imaging, backscatter and forward-scatter systems employ a "flying spot" of x rays and large-area detectors. A small spot is rastered across an individual and the Compton scatter signal collected by these detectors is quickly integrated and assigned to a pixel value in an image corresponding to the transient location of the small flying spot. These systems have been controversial due in part to possible radiation health risks, and lack of independent and accurate measurements of radiation exposures to the subjects, bystanders, and operators of such systems. In this paper we will outline the techniques and instrumentation used at the National Institute of Standards and Technology (NIST) to accurately determine the incident air kerma from a swept beam of x rays. We discuss in detail the response of a large-area free-air ionization chamber under the unusual temporal and spatial radiation fields delivered by commercial scanning systems and report typical values for air kerma levels as well as estimates of air kerma rates.
Keywords: advanced imaging technology; air kerma; air kerma rate; backscatter; dosimetry; ionization chamber; rastered beam; security screening; swept beam; x rays.