Bioelectrical impedance analysis (BIA) is regarded as an important tool for evaluating the body composition of different animals in a rapid, non-destructive, and low-cost manner. A South American fish species, Steindachneridion scriptum, known as suruvi, was selected for study in this investigation. A protocol to produce fish with different body composition was used to allow BIA to adequately predict the body composition of suruvi. The fish were fed twice each day with two different diets; a low lipid diet (8.90%), and a high lipid diet (18.68%). These dietary differences allowed suruvi specimens with different body compositions to be produced. The BIA readings were determined using a Quantum X Bioelectrical Body Composition Analyzer. Two readings (dorsal and ventral) were obtained for each fish. After BIA readings were obtained, the proximate composition of the fish bodies for each individual was determined. All of the study data were used to establish correlation equations between proximate analyses and BIA values. Strong correlations were found for S. scriptum. The highest correlations were obtained for the following pairs of quantities, using BIA data from dorsal readings: moisture and resistance in series (R2 = 0.87); protein and resistance in series (R2 = 0.87); and ash and reactance in parallel (R2 = 0.82). We conclude that BIA is an effective method in determining the body composition of S. scriptum without sacrificing the fish. However, to expand the use of this new technology it is important to define strict BIA protocols to guarantee accurate estimates.