The aim of this study was to evaluate the role of NLRP3 inflammasome on BU/CY-induced liver inflammation in mice after HSCT. HSCT mice model was established through infusion of 5 × 10(6) bone marrow mononuclear cells after conditioned with BU/CY. On day 7, 14, 21 and 28 after HSCT, mice were sacrificed for analysis of liver inflammation, cytokine secretion, NLRP3 expression and caspase-1 activation as well as release of ATP and high-mobility group protein B1 (HMGB1). Furthermore, NLRP3 selective inhibitor (BAY 11-7082) was administrated into mice after HSCT to evaluate its effects on liver inflammation. Severe liver inflammation and damage with elevated secretion of IL-1β and IL-18 were found in mice after HSCT. Meanwhile, elevated expressions of NLRP3 and caspase-1 activation in liver were found. In addition, increased release of ATP and HMGB1 were observed. Selective inhibition of NLRP3 decreased caspase-1 activation and secretion of IL-1β and IL-18. Furthermore, NLRP3 inhibition also reduced infiltration of macrophages and neutrophils and improved liver function. In conclusion, NLRP3 was involved in BU/CY-induced liver inflammation after HSCT and selectively inhibited it ameliorated liver inflammation and improved liver function, suggesting targeting NLRP3 might be a new approach in the prophylaxis of liver inflammation after HSCT.