Sexual selection and population divergence I: The influence of socially flexible cuticular hydrocarbon expression in male field crickets (Teleogryllus oceanicus)

Evolution. 2016 Jan;70(1):82-97. doi: 10.1111/evo.12839. Epub 2016 Jan 11.

Abstract

Debates about how coevolution of sexual traits and preferences might promote evolutionary diversification have permeated speciation research for over a century. Recent work demonstrates that the expression of such traits can be sensitive to variation in the social environment. Here, we examined social flexibility in a sexually selected male trait-cuticular hydrocarbon (CHC) profiles-in the field cricket Teleogryllus oceanicus and tested whether population genetic divergence predicts the extent or direction of social flexibility in allopatric populations. We manipulated male crickets' social environments during rearing and then characterized CHC profiles. CHC signatures varied considerably across populations and also in response to the social environment, but our prediction that increased social flexibility would be selected in more recently founded populations exposed to fluctuating demographic environments was unsupported. Furthermore, models examining the influence of drift and selection failed to support a role of sexual selection in driving population divergence in CHC profiles. Variation in social environments might alter the dynamics of sexual selection, but our results align with theoretical predictions that the role social flexibility plays in modulating evolutionary divergence depends critically on whether responses to variation in the social environment are homogeneous across populations, or whether gene by social environment interactions occur.

Keywords: Founder effect; gene by social environment interaction; interacting phenotype; range expansion; social flexibility.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Evolution*
  • Gryllidae / genetics
  • Gryllidae / physiology*
  • Hydrocarbons / metabolism*
  • Male
  • Mating Preference, Animal*
  • Phenotype
  • Pheromones / metabolism*
  • Polymorphism, Genetic
  • Social Behavior

Substances

  • Hydrocarbons
  • Pheromones