In this work, a ZnO based nanococktail with programmed functions is designed and synthesized for self-synergistic tumor targeting therapy. The nanococktail can actively target tumors via specific interaction of hyaluronic acid (HA) with CD44 receptors and respond to HAase-rich tumor microenvironment to induce intracellular cascade reaction for controlled therapy. The exposed cell-penetrating peptide (R8) potentiates the cellular uptake of therapeutic nanoparticles into targeted tumor cells. Then ZnO cocktail will readily degrade in acidic endo/lysosomes and induce the production of desired reactive oxygen species (ROS) in situ. The destructive ROS not only leads to serious cell damage but also triggers the on-demand drug release for precise chemotherapy, thus achieving enhanced antitumor efficiency synergistically. After tail vein injection of ZnO cocktail, a favorable tumor apoptosis rate (71.2 ± 8.2%) is detected, which is significantly superior to that of free drug, doxorubicin (12.9 ± 5.2%). Both in vitro and in vivo studies demonstrate that the tailor-made ZnO cocktail with favorable biocompatibility, promising tumor specificity, and self-synergistically therapeutic capacity opens new avenues for cancer therapy.
Keywords: cascade reaction; self-synergistic therapy; targeted therapies; tumor targeting.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.