Leukemia inhibitory factor promotes EMT through STAT3-dependent miR-21 induction

Oncotarget. 2016 Jan 26;7(4):3777-90. doi: 10.18632/oncotarget.6756.

Abstract

Leukemia inhibitory factor (LIF) is a multi-function cytokine. Its role in cancer is not well-understood. Recent studies including ours show that LIF is frequently overexpressed in many types of human tumors and promotes the progression and metastasis of tumors. However, the underlying mechanism of LIF's promoting effects on tumor progression and metastasis is poorly defined. Epithelial-mesenchymal transition (EMT) plays an important role in tumor metastasis. This study reports that LIF promotes EMT in human tumor cells. Overexpression of LIF promotes tumor cells to acquire mesenchymal features, including morphological changes of cells from epithelial-like to mesenchymal-like, increased expression levels of mesenchymal markers and decreased expression of epithelial markers. Knockdown of endogenous LIF reverses EMT in cancer cells. We further identified that LIF induces the expression of microRNA-21 (miR-21), which in turn mediates the promoting effect of LIF on EMT. LIF induces miR-21 expression through the activation of STAT3. Importantly, blocking miR-21 function greatly abolished the promoting effect of LIF on EMT and the migration ability of cancer cells. Taken together, results from this study identified an important function and a novel underlying mechanism of LIF in EMT and tumor metastasis.

Keywords: LIF; STAT3; epithelial-mesenchymal transition; miR-21.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis
  • Blotting, Western
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Cell Movement
  • Cell Proliferation
  • Colorectal Neoplasms / genetics
  • Colorectal Neoplasms / metabolism
  • Colorectal Neoplasms / pathology*
  • Epithelial-Mesenchymal Transition
  • Female
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Leukemia Inhibitory Factor / genetics
  • Leukemia Inhibitory Factor / metabolism*
  • MicroRNAs / genetics*
  • RNA, Messenger / genetics
  • Real-Time Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction
  • STAT3 Transcription Factor / genetics
  • STAT3 Transcription Factor / metabolism*
  • Signal Transduction
  • Tumor Cells, Cultured

Substances

  • LIF protein, human
  • Leukemia Inhibitory Factor
  • MIRN21 microRNA, human
  • MicroRNAs
  • RNA, Messenger
  • STAT3 Transcription Factor
  • STAT3 protein, human