Objectives: Although the costs associated with whole-genome and whole-exome next-generation sequencing continue to decline, they remain prohibitively expensive for large-scale studies of genetic variation. As an alternative, custom-target sequencing has become a common methodology on the basis of its favorable balance between cost, throughput, and deep coverage.
Methods: We have developed PGRNseq, a custom-capture panel of 84 genes with associations to pharmacogenetic phenotypes, as a tool to explore the relationship between drug response and genetic variation, both common and rare. We utilized a set of 32 diverse HapMap trios and two clinical cohorts to assess platform performance, accuracy, and ability to discover novel variation.
Results: We found that PGRNseq generates ultra-deep coverage data (mean=496x) that are over 99.8% concordant with orthogonal datasets. In addition, in our testing sets, PGRNseq identified many novel, rare variants of interest, underscoring its value in both research and clinical settings.
Conclusion: PGRNseq is an ideal platform for carrying out sequencing-based analyses of pharmacogenetic variation in large cohorts. In addition, the high accuracy associated with genotypes from PGRNseq highlight its utility as a clinical test.