Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Room-Temperature Phosphorescence

Angew Chem Int Ed Engl. 2016 Feb 5;55(6):2181-5. doi: 10.1002/anie.201509224. Epub 2016 Jan 6.

Abstract

Although persistent room-temperature phosphorescence (RTP) emission has been observed for a few pure crystalline organic molecules, there is no consistent mechanism and no universal design strategy for organic persistent RTP (pRTP) materials. A new mechanism for pRTP is presented, based on combining the advantages of different excited-state configurations in coupled intermolecular units, which may be applicable to a wide range of organic molecules. By following this mechanism, we have developed a successful design strategy to obtain bright pRTP by utilizing a heavy halogen atom to further increase the intersystem crossing rate of the coupled units. RTP with a remarkably long lifetime of 0.28 s and a very high quantum efficiency of 5 % was thus obtained under ambient conditions. This strategy represents an important step in the understanding of organic pRTP emission.

Keywords: intersystem crossing; organic materials; phosphorescence; photochemistry; spin-orbit coupling.

Publication types

  • Research Support, Non-U.S. Gov't