Leukemia cells escape BCR-ABL-targeted therapy by developing mutations, such as T315I, in the p210(BCR-ABL) fusion protein in Philadelphia chromosome-positive chronic myeloid leukemia (CML). Although most effort has been focused on development of new tyrosine kinase inhibitors, enrichment of these small-molecule inhibitors in the tumor tissue can also have a profound impact on treatment outcomes. Here, we report that a 2-hour exposure of the T315I-mutant CML cells to 10 μmol/L of the multikinase inhibitor TG101209 suppressed BCR-ABL-independent signaling and caused cell-cycle arrest at G2-M. Further increase in drug concentration to 17.5 μmol/L blocked phosphorylation of the mutant BCR-ABL kinase and its downstream JAK2 and STAT5. The effective dosage to overcome therapy resistance identified in an in vitro setting serves as a guidance to develop the proper drug formulation for in vivo efficacy. A targeted formulation was developed to achieve sustained bone marrow TG101209 concentration at or above 17.5 μmol/L for effective killing of CML cells in vivo Potent inhibition of leukemia cell growth and extended survival were observed in two murine models of CML treated with 40 mg/kg intravenously administered targeted TG101209, but not with the untargeted drug at the same dosage. Our finding provides a unique approach to develop treatments for therapy-resistant CML. Mol Cancer Ther; 15(5); 899-910. ©2016 AACR.
©2016 American Association for Cancer Research.