The oncofetal RNA-binding protein IGF2BP1 (IGF2 mRNA binding protein 1) is overexpressed in a subset of cancers and promotes cell cycle, migration and aggressive phenotype by regulating post-transcriptionally a number of key mRNAs (e. g, ACTB, CD44, CTNNB1, KRAS, MAPK4, MYC, PTEN and others). IGF2BP1 is also overexpressed in t(12;21)(p13;q22)-positive acute lymphoblastic leukemia (ALL), but the biological significance of this phenomenon has not been addressed so far. We have identified leukemia fusion gene ETV6/RUNX1 mRNA to be highly enriched in immunoprecipitated fraction of endogenous IGF2BP1 from a model cell line REH and t(12;21)(p13;q22)-positive ALL samples. Furthermore, downregulation of IGF2BP1 by two-fold has resulted in a corresponding decrease of ETV6/RUNX1 mRNA validating this transcript as a target of IGF2BP1 protein in t(12;21)(p13;q22)-positive ALL. These data infer that IGF2BP1 is a potent regulator of ETV6/RUNX1 mRNA stability and potentially link this evolutionary-highly conserved protein to cell transformation events in ETV6/RUNX1-mediated leukemogenesis of t(12;21)(p13;q22)-positive ALL.
Keywords: ETV6/RUNX1; IGF2BP1; TEL-AML1; t(12;21)(p13;q22).
Copyright © 2015 Elsevier Inc. All rights reserved.