Background: Establishing an evidence-based diagnostic system informed by the biological (dys)function of the nervous system is a major priority in psychiatry. This objective, however, is often challenged by difficulties in identifying homogeneous clinical populations. Melancholia, a biological and endogenous subtype for major depressive disorder, presents a canonical test case in the search of biological nosology.
Method: We employed a unique combination of naturalistic functional magnetic resonance imaging (fMRI) paradigms - resting state and free viewing of emotionally salient films - to search for neurobiological signatures of depression subtypes. fMRI data were acquired from 57 participants; 17 patients with melancholia, 17 patients with (non-melancholic) major depression and 23 matched healthy controls.
Results: Patients with melancholia showed a prominent loss of functional connectivity in hub regions [including ventral medial prefrontal cortex, anterior cingulate cortex (ACC) and superior temporal gyrus] during natural viewing, and in the posterior cingulate cortex while at rest. Of note, the default mode network showed diminished reactivity to external stimuli in melancholia, which correlated with the severity of anhedonia. Intriguingly, the subgenual ACC, a potential target for treating depression with deep brain stimulation (DBS), showed divergent changes between the two depression subtypes, with increased connectivity in the non-melancholic and decreased connectivity in the melancholic subsets.
Conclusion: These findings reveal neurobiological changes specific to depression subtypes during ecologically valid behavioural conditions, underscoring the critical need to respect differing neurobiological processes underpinning depressive subtypes.
Keywords: Depression; emotion; functional connectivity; natural viewing.