Exposure to arsenic (As) or lead (Pb) has been associated with adverse health outcomes, and high-risk populations can be disproportionately exposed to these metals in soils. The objectives of this study were: to examine if predicted soil As and Pb concentrations at maternal residences of South Carolina (SC) low-income mothers differed based on maternal race (non-Hispanic black versus white), to examine whether differences in predicted residential soil As and Pb concentrations among black and white mothers differed by socioeconomic status (SES), and to examine whether such disparities persisted after controlling for anthropogenic sources of these metals, including direction from, and distance to industrial facilities. Kriged soil As and Pb concentrations were estimated at maternal residences in 11 locations in SC, and models with maternal race and individual and US Census block group level SES measures were examined. US Environmental Protection Agency Toxics Release Inventory (TRI) facility As and Pb releases categorized by distance and direction to block groups in which mothers resided were also identified, as were proxy measures for historic use of leaded gasoline (road density) and Pb-based paint (categories of median year home built by US Census block group). Consistent racial disparities were observed for predicted residential soil As and Pb concentrations, and the disparity was stronger for Pb than As (betas from adjusted models for black mothers were 0.12 and 2.2 for As and Pb, respectively, all p<0.006). Higher road density and older homes in block groups were more closely associated with higher predicted soil As and Pb concentrations than on-site releases of As and Pb categorized by facility location. These findings suggest that non-Hispanic black mothers in this study population had elevated residential As and Pb soil concentrations, after adjusting for SES, and that soil As and Pb concentrations were not associated with recent industrial releases.
Keywords: Industrial facility distance/direction; Maternal exposure; Neighborhood deprivation; Racial disparity; Residential soil metals; Road density.
Copyright © 2016 Elsevier B.V. All rights reserved.