Large deletions that are associated with insertions of Alu-derived sequence represent a rare, but potentially unique class of alterations. Whether they form by a one-step mechanism or by a primary insertion step followed by an independent secondary deletion step is not clear. We resolved two disease-associated SPAST deletions, which involve distinct exons by long range PCR. Alu-derived sequence was observed between the breakpoints in both cases. The intronic regions that represent the targets of potentially involved Alu retrotransposition events overlapped. Microsatellite- and SNP-based haplotyping indicated that both deletions originated on one and the same founder allele. Our data suggest that the deletions are best explained by two-step insertion-deletion scenarios for which a single Alu retrotransposition event represents the shared primary step. This Alu then mediated one of the deletions by non-homologous end joining and the other by non-allelic homologous recombination. Our findings thus strongly argue for temporal separation of insertion and deletion in Alu insertion-associated deletions. They also suggest that certain Alu integrations confer a general increase in local genomic instability, and that this explains why they are usually not detected during the probably short time that precedes the rearrangements they mediate.