As an alternative class of antimicrobial agents used to overcome drug-resistant infections, antimicrobial peptides (AMPs) have recently gained significant attention. In this study, we designed an improved antimicrobial peptide, K1K8, based on the molecular template of Hp1404. Compared to the wild-type Hp1404, K1K8 showed an improved antibacterial spectrum in vitro, a lower hemolytic activity, and an enhanced serum stability. Importantly, K1K8 also decreased methicillin-resistant Staphylococcus aureus (MRSA) bacterial counts in the wounded region in a mouse skin infection model. Interestingly, K1K8 did not induce bacterial resistance or non-specific immune response reactions. Moreover, the peptide killed bacterial cells mainly by disrupting the bacterial membrane. In summary, K1K8 has the potential to be used as an improved anti-infection agent for topical use, which opens an avenue that potential anti-infection drugs may be designed and developed from the molecular templates of AMPs.
Keywords: Antimicrobial peptides; Hemolysis; MRSA skin infection; Resistance; Serum stability.