Oncolytic virotherapy with an armed vaccinia virus in an orthotopic model of renal carcinoma is associated with modification of the tumor microenvironment

Oncoimmunology. 2015 Oct 6;5(2):e1080414. doi: 10.1080/2162402X.2015.1080414. eCollection 2016 Feb.

Abstract

Oncolytic virotherapy is an emergent promising therapeutic approach for the treatment of cancer. We have constructed a vaccinia virus (WR strain) deleted for thymidine kinase (TK) and ribonucleotide reductase (RR) genes that expressed the fusion suicide gene FCU1 derived from the yeast cytosine deaminase and uracil phosphoribosyltransferase genes. We evaluated this construct (VV-FCU1) in the orthotopic model of renal carcinoma (RenCa). Systemic administration of VV-FCU1 resulted in orthotopic tumor growth inhibition, despite temporary expression of viral proteins. VV-FCU1 treatment was associated with an infiltration of tumors by CD8+ T lymphocytes and a decrease in the proportion of infiltrating Tregs, thus modifying the ratio of CD8+/CD4+ Treg in favor of CD8+cytotoxic T cells. We demonstrated that VV-FCU1 treatment prolonged survival of animals implanted with RenCa cells in kidney. Depletion of CD8+ T cells abolished the therapeutic effect of VV-FCU1 while depletion of CD4+ T cells enhanced its protective activity. Administration of the prodrug 5-fluorocytosine (5-FC) resulted in a sustained control of tumor growth but did not extend survival. This study shows the importance of CD4+ and CD8+ T cells in vaccinia virus-mediated oncolytic virotherapy and suggests that this approach may be evaluated for the treatment of human renal cell carcinoma.

Keywords: Oncolytic virotherapy; regulatory T cells; renal carcinoma; suicide gene therapy; tumor microenvironment; vaccinia virus.

Publication types

  • Research Support, Non-U.S. Gov't