A recent update of the hallmarks of cancer includes metabolism with deregulating cellular energetics. Activating mutations in isocitrate dehydrogenase (IDH) metabolic enzymes leading to the abnormal accumulation of 2-hydroxyglutaric acid (2-HGA) have been described in hematologic malignancies and solid tumours. The diagnostic value of 2-HGA levels in blood to identify IDH mutations and its prognostic significance have been reported. We developed a liquid chromatography tandem mass spectrometry method allowing a rapid, accurate and precise simultaneous quantification of both L and D enantiomers of 2-HGA in blood samples from acute myeloid leukaemia (AML) patients, suitable for clinical applications. The method was also develop for preclinical applications from cellular and tissues samples. Deuterated (R,S)-2-hydroxyglutaric acid, disodium salt was used as internal standard and added to samples before a solid phase extraction on Phenomenex STRATA™-XL-A (200mg-3mL) 33μm cartridges. A derivatization step with (+)- o,o'-diacetyl-l-tartaric anhydride permitted to separate the two resulting diastereoisomers without chiral stationary phase, on a C18 column combined to a Xevo TQ-MS Waters mass spectrometer with an electrospray ionization (ESI) source. This method allows standard curves to be linear over the range 0.34-135.04μM with r(2) values>0.999 and low matrix effects (<11.7%). This method, which was validated according to current EMA guidelines, is accurate between-run (<3.1%) and within-run (<7.9%) and precise between-run (<5.3CV%) and within-run (<6.2CV%), and is suitable for clinical and preclinical applications.
Keywords: 2-Hydroxyglutaric acid; Biomarker; Endogenous compounds; Isocitrate dehydrogenase mutations; Liquid tandem mass spectrometry; Oncometabolite.
Copyright © 2016 Elsevier B.V. All rights reserved.