Background and aims: Familial hypobetalipoproteinemia (FHBL) is a co-dominant disorder characterized by decreased plasma levels of LDL-cholesterol and apolipoprotein B (ApoB). Currently, genetic diagnosis in FHBL relies largely on Sanger sequencing to identify APOB and PCSK9 gene mutations and on western blotting to detect truncated ApoB species.
Methods: Here, we applied targeted enrichment and next-generation sequencing (NGS) on a panel of three FHBL genes and two abetalipoproteinemia genes (APOB, PCSK9, ANGPTL3, MTTP and SAR1B).
Results: In this study, we identified five likely pathogenic heterozygous rare variants. These include four novel nonsense mutations in APOB (p.Gln845*, p.Gln2571*, p.Cys2933* and p.Ser3718*) and a rare variant in PCSK9 (Minor Allele Frequency <0.1%). The affected family members tested were shown to be carriers, suggesting co-segregation with low LDL-C.
Conclusions: Our study further demonstrates that NGS is a reliable and practical approach for the molecular screening of FHBL-causative genes that may provide a mean for deciphering the genetic basis in FHBL.
Keywords: APOB; Familial hypobetalipoproteinemia; Molecular diagnosis; PCSK9; Target next generation sequencing.
Copyright © 2016. Published by Elsevier Ireland Ltd.