Background: The transfusion of red blood cell (RBC) concentrates is the main treatment for acute vaso-occlusive symptoms in sickle cell disease (SCD). Units of packed RBCs (pRBCs) must retain optimal characteristics for transfusion throughout the storage period. Transfused RBCs interact with the plasma and the endothelium that lines blood vessels and may be the target of immune-hematologic conflict if the patient produces antibodies against RBCs. Questions remain concerning the benefit-risk balance of RBC transfusions, in particular about the shelf-life of the units.
Study design and methods: Plasma samples from 33 hemoglobin SS patients with SCD who had severe acute-phase symptoms or were in steady-state were put in contact with 10 fresh-stored and older stored samples from the same 10 RBC units. The factors affecting RBC survival (phosphatidylserine exposure, cytosolic calcium influx, cell size reduction) were analyzed.
Results: We show that the effects of plasma samples from patients with SCD on pRBCs depend on the clinical condition of the patients and the duration of red cell storage. Signs of RBC senescence were correlated with the clinical status of the patient from whom the plasma sample was obtained. A decrease in RBC size and an increase in phosphatidylserine exposure were correlated with the duration of RBC storage. The behavior of cryopreserved pRBCs was similar to that of fresh refrigerated RBCs when challenged with patient plasma samples.
Conclusion: The key points of this study are that the clinical condition of patients with SCD can negatively affect the integrity of pRBCs for transfusion, and those effects increase with longer storage. Also, cryopreserved pRBCs behave similarly to fresh RBCs when challenged with plasma samples from patients with SCD in acute phase. Our data provide the first evidence that fresh RBCs stored for short periods may be of greater benefit to patients with SCD than RBCs that have been refrigerated for longer periods, particularly for those who have acute symptoms of SCD.
© 2016 AABB.