Antibody drug conjugates (ADCs) are complex therapeutic agents combining the selectivity of monoclonal antibodies and highly efficacious small molecule drugs to successfully eliminate tumor cells while limiting the general toxicity and side effects of the therapeutic to protect patient safety. One unique attribute critical to the safety of ADCs is the residual content of unconjugated small molecule drug present from either incomplete conjugation or degradation of the ADC. Typically for quality control assays, quantifying the amount of the free drug is performed through precipitation of the protein species using an organic solvent and then assaying the amount of free drug left in the supernatant. During the validation of an assay of this type for a maleimide based linker drug, issues were experienced with low and variable recovery in the spiked samples of the drug substance and drug product. A two-dimensional heart-cutting method coupling Size Exclusion Chromatography (SEC) with Reverse Phase (RP) chromatography was utilized to explore possible mechanisms leading to the low recovery of the free linker drug. The results of the investigation indicated that the spiked linker drug reacts with residual reactive groups on the ADC; a conclusion which was confirmed by the observed increase of average Drug to Antibody Ratio (DAR) determined by Hydrophobic Interaction Chromatography (HIC). Finally, several approaches were evaluated to minimize the recovery loss. Capping the residual reactive groups on the ADC with maleimide containing reagents effectively mitigated the low recovery issue.
Keywords: 2D-LC; Antibody drug conjugates; Hydrophobic interaction chromatography.
Copyright © 2016 Elsevier B.V. All rights reserved.