The inner and outer surfaces of bilayer-based lipid nanotubes can be hardly modified selectively by a favorite functional group. Monolayer-based nanotubes display a definitive difference in their inner and outer functionalities if bipolar wedge-shaped amphiphiles, so-called bolaamphiphiles, as a constituent of the monolayer membrane pack in a parallel fashion with a head-to-tail interface. To exclusively form unsymmetrical monolayer lipid membranes, we focus herein on the rational molecular design of bolaamphiphiles and a variety of self-assembly processes into tubular architectures. We first describe the importance of polymorph and polytype control and then discuss diverse methodologies utilizing a polymer template, multiple hydrogen bonds, binary and ternary coassembly, and two-step self-assembly. Novel biologically important functions of the obtained soft nanotubes, brought about only by completely unsymmetrical inner and outer surfaces, are discussed in terms of protein refolding, drug nanocarriers, lectin detection, a chiral inducer for achiral polymers, the tailored fabrication of polydopamine, and spontaneous nematic alignment.