Similar to Parkinson disease, multiple system atrophy (MSA) presents neuropathologically with nigral neuronal loss; however, the hallmark intracellular α-synuclein (αSyn) accumulation in MSA affects typically oligodendrocytes to form glial cytoplasmic inclusions. The underlying pathogenic mechanisms remain unclear. As MSA is predominantly sporadic, epigenetic mechanisms may play a role. We tested the effects of the pan-histone deacetylase inhibitor (HDACi) sodium phenylbutyrate in aged mice overexpressing αSyn under the control of the proteolipid protein promoter (PLP-αSyn) designed to model MSA and characterized by αSyn accumulation in oligodendrocytes and nigral neurodegeneration. HDACi improved motor behavior and survival of nigral neurons in PLP-αSyn mice. Furthermore, HDACi reduced the density of oligodendroglial αSyn aggregates, which correlated with the survival of nigral neurons in PLP-αSyn mice. For the first time, we suggest a role of HDACi in the pathogenesis of MSA-like neurodegeneration and support the future development of selective HDACi for MSA therapy.
Keywords: histone acetylation; neuroprotection; nigral degeneration; phenylbutyrate; α-Synuclein.