Background: Physical exercises are widely used in community programs, but not all older adults are willing to participate. Information and communication technology may solve this problem by allowing older people to participate in fitness programs at home. Use of remote instruction will facilitate physical exercise classes without requiring that participants gather at one place. The aim of this study was to examine use of a sit-to-stand task in evaluating motor function using conventional video communication in a telemetry system to enable real-time monitoring, and evaluation in physical performance of older adults at home.
Methods: The participants were 59 older individuals and 81 university students. Three physical exercise batteries were used: arm curl, figure-of-eight walk test, and functional reach. The knee extension maximum angular velocity (KEMAV) and the iliac elevation maximum velocity (IEMV) during standing up from a chair and the heel rise frequency were used in the motion-capture measurements. The results were assessed using multi-group structural equation modeling (SEM) for the young and older groups.
Results: Young participants consistently performed better than their older counterparts on all items. Analyses with multi-group SEM based on correlations between items yielded a good model-fit for the data. Among all path diagrams for IEMV and KEMAV in the older and young groups, paths from muscular strength to skillfulness showed significant effects. The path from the IEMV to muscular strength was also significant in the older group.
Conclusions: Multi-group SEM suggested that video-based measurements of IEMV during sit-to-stand motion can estimate muscular strength, which suggests that remote monitoring of physical performance can support wellness of community-dwelling older adults.
Keywords: Iliac elevation maximum velocity; Knee extension maximum angular velocity; Multi-group structural equation modeling; Older adults; Physical batteries; Remote motion capture; Sit-stand-task.