A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism

PLoS One. 2016 Jun 17;11(6):e0157747. doi: 10.1371/journal.pone.0157747. eCollection 2016.

Abstract

Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a.

MeSH terms

  • Animals
  • Calcium
  • Cell Differentiation / drug effects*
  • Embryonic Stem Cells / drug effects
  • Energy Metabolism / drug effects
  • Flavonoids / administration & dosage*
  • GTP Phosphohydrolases / genetics*
  • Gene Expression Regulation / drug effects
  • Mice
  • Neural Stem Cells / drug effects
  • Neurogenesis / drug effects
  • Neurons / drug effects
  • PPAR gamma / biosynthesis
  • PPAR gamma / genetics
  • PPAR-beta / biosynthesis*
  • PPAR-beta / genetics

Substances

  • Flavonoids
  • PPAR gamma
  • PPAR-beta
  • GTP Phosphohydrolases
  • Mfn2 protein, mouse
  • Calcium

Grants and funding

This work was supported by National Natural Science Foundation of China (№ 81573513, № 81173135, № 90813026; http://www.nsfc.gov.cn ), and by Zhejiang Provincial Natural Science Foundation of China (№ LZ12H31001, № Z2110655; http://www.zjnsf.gov.cn ). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.