An invertebrate-specific and immune-responsive microRNA augments oyster haemocyte phagocytosis by targeting CgIκB2

Sci Rep. 2016 Jul 12:6:29591. doi: 10.1038/srep29591.

Abstract

Nuclear factor (NF)-κB pathway is an evolutionally conserved pathway in activating immune response, in which IκBs can repress the activation. In the present study, cgi-miR-2d, an invertebrate-specific microRNA, was proved to regulate CgIκB2 expression and haemocyte phagocytosis during bacterial infection in oyster Crassostrea gigas. The expression of cgi-miR-2d was significantly up-regulated after Vibrio splendidus challenge, while CgIκB2 transcripts decreased. Significant decreases in both luminescence and CgIκB2 3'UTR level was observed after transfection of cgi-miR-2d in CgIκB2 3'UTR luciferase reporter assay. CgIκB2 mRNA level decreased significantly (0.51-fold of control group, p < 0.05) in gain-of-function assay of cgi-miR-2d in vivo while it increased markedly (1.27-fold, p < 0.05) when cgi-miR-2d was repressed (0.10-fold, p < 0.01). A significant increase of haemocyte phagocytosis rate was observed in cgi-miR-2d overexpression group (p < 0.01), consistent with results in CgIκB2 knock-down group (p < 0.01). Moreover, the apoptosis rate of haemocytes was found significantly declined (28.57%, p < 0.01) in gain-of-function assay of cgi-miR-2d. Together, those results not only depicted the functional conservation of miR-2d family in anti-apoptosis of oysters but also highlighted its interaction with phagocytosis by modulating NF-κB pathway, which might dedicate critically to the well-balance of host immune response.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Crassostrea / immunology*
  • Crassostrea / virology*
  • Hemocytes / immunology*
  • I-kappa B Proteins / metabolism*
  • MicroRNAs / immunology*
  • Phagocytosis*
  • Vibrio / physiology*
  • Vibrio Infections

Substances

  • I kappa B beta protein
  • I-kappa B Proteins
  • MicroRNAs