Antidepressant efficacy is insufficient, unpredictable and poorly understood in major depressive episode (MDE). Gene expression studies allow for the identification of significantly dysregulated genes but can limit the exploration of biological pathways. In the present study, we proposed a gene coexpression analysis to investigate biological pathways associated with treatment response predisposition and their regulation by microRNAs (miRNAs) in peripheral blood samples of MDE and healthy control subjects. We used a discovery cohort that included 34 MDE patients that were given 12-week treatment with citalopram and 33 healthy controls. Two replication cohorts with similar design were also analyzed. Expression-based gene network was built to define clusters of highly correlated sets of genes, called modules. Association between each module's first principal component of the expression data and clinical improvement was tested in the three cohorts. We conducted gene ontology analysis and miRNA prediction based on the module gene list. Nine of the 59 modules from the gene coexpression network were associated with clinical improvement. The association was partially replicated in other cohorts. Gene ontology analysis demonstrated that 4 modules were associated with cytokine production, acute inflammatory response or IL-8 functions. Finally, we found 414 miRNAs that may regulate one or several modules associated with clinical improvement. By contrast, only 12 miRNAs were predicted to specifically regulate modules unrelated to clinical improvement. Our gene coexpression analysis underlines the importance of inflammation-related pathways and the involvement of a large miRNA program as biological processes predisposing associated with antidepressant response.
Keywords: Antidepressant; Gene network; Inflammation; MicroRNA; Mood disorder.
Copyright © 2016 Elsevier Ltd. All rights reserved.