Hydrogels usually suffer from low mechanical strength, which largely limit their application in many fields. In this Research Article, we prepared a dual physically cross-linked hydrogel composed of poly(acrylamide-co-acrylic acid) (PAM-co-PAA) and poly(vinyl alcohol) (PVA) by simple two-steps methods of copolymerization and freezing/thawing. The hydrogen bond-associated entanglement of copolymer chains formed as cross-linking points to construct the first network. After being subjected to the freezing/thawing treatment, PVA crystalline domains were formed to serve as knots of the second network. The hydrogels were demonstrated to integrate strength and toughness (1230 ± 90 kPa and 1250 ± 50 kJ/m(3)) by the introduction of second physically cross-linked network. What̀s more, the hydrogels exhibited rapid recovery, excellent fatigue resistance, and self-healing property. The dynamic property of the dual physically cross-linked network contributes to the excellent energy dissipation and self-healing property. Therefore, this work provides a new route to understand the toughness mechanism of dual physically cross-linked hydrogels, hopefully promoting current hydrogel research and expanding their applications.
Keywords: H-bond; dual physically cross-linked network; hydrogel; self-healing; toughness.