A series of Fe(III) complexes were recently reported that are stable and active electrocatalysts for reducing protons into hydrogen gas. Herein, we report the incorporation of these electrocatalysts into a photocatalytic system for hydrogen production. Hydrogen evolution is observed when these catalysts are paired with fluorescein (chromophore) and triethylamine (sacrificial electron source) in a 1:1 ethanol:water mixture. The photocatalytic system is highly active and stable, achieving TONs > 2100 (with respect to catalyst) after 24 h. Catalysis proceeds through a reductive quenching pathway with a quantum yield of over 3%.