An improved reprogrammable mouse model harbouring the reverse tetracycline-controlled transcriptional transactivator 3

Stem Cell Res. 2016 Jul;17(1):49-53. doi: 10.1016/j.scr.2016.05.008. Epub 2016 May 25.

Abstract

Reprogrammable mouse models engineered to conditionally express Oct-4, Klf-4, Sox-2 and c-Myc (OKSM) have been instrumental in dissecting molecular events underpinning the generation of induced pluripotent stem cells. However, until now these models have been reported in the context of the m2 reverse tetracycline-controlled transactivator, which results in low reprogramming efficiency and consequently limits the number of reprogramming intermediates that can be isolated for downstream profiling. Here, we describe an improved OKSM mouse model in the context of the reverse tetracycline-controlled transactivator 3 with enhanced reprogramming efficiency (>9-fold) and increased numbers of reprogramming intermediate cells albeit with similar kinetics, which we believe will facilitate mechanistic studies of the reprogramming process.

MeSH terms

  • Animals
  • Cell Differentiation / drug effects
  • Cells, Cultured
  • Cellular Reprogramming*
  • Fibroblasts / cytology
  • Fibroblasts / metabolism
  • Induced Pluripotent Stem Cells / cytology
  • Induced Pluripotent Stem Cells / metabolism
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors / genetics
  • Kruppel-Like Transcription Factors / metabolism
  • Mice
  • Octamer Transcription Factor-3 / genetics
  • Octamer Transcription Factor-3 / metabolism
  • Plasmids / metabolism
  • Proto-Oncogene Proteins c-myc / genetics
  • Proto-Oncogene Proteins c-myc / metabolism
  • SOXB1 Transcription Factors / genetics
  • SOXB1 Transcription Factors / metabolism
  • Teratoma / pathology
  • Tetracyclines / pharmacology*
  • Transcriptional Activation / drug effects*

Substances

  • Klf4 protein, mouse
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors
  • Octamer Transcription Factor-3
  • Proto-Oncogene Proteins c-myc
  • SOXB1 Transcription Factors
  • Tetracyclines