Purpose: To investigate the in vitro and in vivo antitumor effects of amarogentin in SNU-16 human gastric cancer cells as well as in nude mice xenograft model. The effects of this compound on cell apoptosis, cell cycle phase distribution and PI3K/Akt and m-TOR signalling pathways were also studied in detail.
Methods: MTT assay was used to study the effect of amarogentin on SNU-16 cell viability while clonogenic assay indicated the effect of the compound on colony formation tendency of these cells. Phase contrast microscopy revealed the effect on cellular morphology while flow cytometry was engaged to study the effects on cell apoptosis and cell cycle arrest. SNU-16 cancer cells were subcutaneously inoculated into nude mice to investigate the in vivo antitumor effects of amarogentin.
Results: Amarogentin induced potent, dose-dependent as well as time-dependent cytotoxic effects on the growth of SNU-16 human gastric cancer cells. Amarogentin also inhibited the colony forming capability of these tumor cells and its treatment led to morphological alterations in these cells in which the cells became withered and rounded, detached from one another and adopted irregular shapes while floating freely in the culture medium. In comparison to untreated control cells, the amarogentin treated cells with 10, 50 and 75 μM exhibited 32.5, 45.2 and 57.1 % apoptotic cells, respectively. Amarogentin induced potent and dose-dependent G2/M cell cycle arrest in these cells and led to downregulation of m-TOR, p-PI3K, PI3K, p-Akt and Akt and upregulation of cyclin D1 and cyclin E protein expressions. The tumor tissues obtained from the amarogentin-treated mice were much smaller than the tumor tissues derived from the control group.
Conclusion: Amarogentin exerts potent in vitro and in vivo antitumor effects in SNU-16 cell model as well as in nude mice xenograft model. These antitumor effects were found to be mediated through apoptosis induction, G2/M cell cycle arrest and downregulation of PI3K/Akt/m-TOR signalling pathways.