Colorectal cancer is the fourth most prevalent cancer in the United States, yet there are no reliable noninvasive early screening methods available. Serum-based glycomic profiling has the necessary sensitivity and specificity to distinguish disease states and provide diagnostic potential for this deadly form of cancer. We applied microchip electrophoresis and MALDI-TOF-MS-based glycomic procedures to 20 control serum samples and 42 samples provided by patients diagnosed with colorectal cancer. Within the identified glycans, the position of fucose units was located to quantitate possible changes of fucosyl isomeric species associated with the pathological condition. MALDI-MS data revealed several fucosylated tri- and tetra-antennary glycans which were significantly elevated in their abundance levels in the cancer samples and distinguished the control samples from the colorectal cancer cohort in the comprehensive profiles. When compared to other cancers studied previously, some unique changes appear to be associated with colorectal cancer, being primarily associated with fucosyl isomers. Through MS and microchip electrophoresis-based glycomic methods, several potential biomarkers were identified to aid in the diagnosis and differentiation of colorectal cancer. With its unique capability to resolve isomers, microchip electrophoresis can yield complementary analytical information to MS-based profiling.