Principal cell activity induces spine relocation of adult-born interneurons in the olfactory bulb

Nat Commun. 2016 Aug 31:7:12659. doi: 10.1038/ncomms12659.

Abstract

Adult-born neurons adjust olfactory bulb (OB) network functioning in response to changing environmental conditions by the formation, retraction and/or stabilization of new synaptic contacts. While some changes in the odour environment are rapid, the synaptogenesis of adult-born neurons occurs over a longer time scale. It remains unknown how the bulbar network functions when rapid and persistent changes in environmental conditions occur but when new synapses have not been formed. Here we reveal a new form of structural remodelling where mature spines of adult-born but not early-born neurons relocate in an activity-dependent manner. Principal cell activity induces directional growth of spine head filopodia (SHF) followed by spine relocation. Principal cell-derived glutamate and BDNF regulate SHF motility and directional spine relocation, respectively; and spines with SHF are selectively preserved following sensory deprivation. Our three-dimensional model suggests that spine relocation allows fast reorganization of OB network with functional consequences for odour information processing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain-Derived Neurotrophic Factor / genetics
  • Brain-Derived Neurotrophic Factor / metabolism
  • Cell Movement / physiology
  • Dendritic Spines / physiology*
  • Female
  • Glutamic Acid / metabolism
  • Image Processing, Computer-Assisted
  • Interneurons / cytology
  • Interneurons / physiology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Models, Animal
  • Models, Biological
  • Neurogenesis / physiology*
  • Odorants
  • Olfactory Bulb / cytology
  • Olfactory Bulb / physiology*
  • Pseudopodia / physiology
  • Sensory Deprivation / physiology
  • Smell / physiology
  • Synapses / physiology
  • Time-Lapse Imaging / methods

Substances

  • Brain-Derived Neurotrophic Factor
  • Glutamic Acid