Purpose: We investigated the association of the macular ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (RNFL) thicknesses with disease progression in mild cognitive impairment (MCI) and Alzheimer's disease (AD).
Methods: We recruited 42 patients with AD, 26 with MCI, and 66 normal elderly controls. The thicknesses of the RNFL and GCIPL were measured via spectral-domain optic coherent tomography in all participants at baseline. The patients with MCI or AD underwent clinical and neuropsychological tests at baseline and once every year thereafter for 2 years.
Results: The Clinical Dementia Rating scale-Sum of Boxes (CDR-SB) score exhibited significant negative relationships with the average GCIPL thickness (β = -0.15, p < 0.05) and the GCIPL thickness in the superotemporal, superonasal, and inferonasal sectors. The composite memory score exhibited significant positive associations with the average GCIPL thickness and the GCIPL thickness in the superotemporal, inferonasal, and inferotemporal sectors. The temporal RNFL thickness, the average and minimum GCIPL thicknesses, and the GCIPL thickness in the inferonasal, inferior, and inferotemporal sectors at baseline were significantly reduced in MCI patients who were converted to AD compared to stable MCI patients. The change of CDR-SB from baseline to 2 years exhibited significant negative associations with the average (β = -0.150, p = 0.006) and minimum GCIPL thicknesses as well as GCIPL thickness in the superotemporal, superior, superonasal, and inferonasal sectors at baseline.
Conclusions: Our data suggest that macular GCIPL thickness represents a promising biomarker for monitoring the progression of MCI and AD.